69 research outputs found

    On hypohamiltonian snarks and a theorem of Fiorini

    Get PDF
    In 2003, Cavicchioli et al. corrected an omission in the statement and proof of Fiorini's theorem from 1983 on hypohamiltonian snarks. However, their version of this theorem contains an unattainable condition for certain cases. We discuss and extend the results of Fiorini and Cavicchioli et al. and present a version of this theorem which is more general in several ways. Using Fiorini's erroneous result, Steffen had shown that hypohamiltonian snarks exist for some orders n >= 10 and each even n >= 92. We rectify Steffen's proof by providing a correct demonstration of a technical lemma on flower snarks, which might be of separate interest. We then strengthen Steffen's theorem to the strongest possible form by determining all orders for which hypohamiltonian snarks exist. This also strengthens a result of Macajova and Skoviera. Finally, we verify a conjecture of Steffen on hypohamiltonian snarks up to 36 vertices

    On the smallest snarks with oddness 4 and connectivity 2

    Get PDF
    A snark is a bridgeless cubic graph which is not 3-edge-colourable. The oddness of a bridgeless cubic graph is the minimum number of odd components in any 2-factor of the graph. Lukot'ka, M\'acajov\'a, Maz\'ak and \v{S}koviera showed in [Electron. J. Combin. 22 (2015)] that the smallest snark with oddness 4 has 28 vertices and remarked that there are exactly two such graphs of that order. However, this remark is incorrect as -- using an exhaustive computer search -- we show that there are in fact three snarks with oddness 4 on 28 vertices. In this note we present the missing snark and also determine all snarks with oddness 4 up to 34 vertices.Comment: 5 page

    Generation of cubic graphs and snarks with large girth

    Full text link
    We describe two new algorithms for the generation of all non-isomorphic cubic graphs with girth at least k≥5k\ge 5 which are very efficient for 5≤k≤75\le k \le 7 and show how these algorithms can be efficiently restricted to generate snarks with girth at least kk. Our implementation of these algorithms is more than 30, respectively 40 times faster than the previously fastest generator for cubic graphs with girth at least 6 and 7, respectively. Using these generators we have also generated all non-isomorphic snarks with girth at least 6 up to 38 vertices and show that there are no snarks with girth at least 7 up to 42 vertices. We present and analyse the new list of snarks with girth 6.Comment: 27 pages (including appendix

    Fullerenes with distant pentagons

    Full text link
    For each d>0d>0, we find all the smallest fullerenes for which the least distance between two pentagons is dd. We also show that for each dd there is an hdh_d such that fullerenes with pentagons at least distance dd apart and any number of hexagons greater than or equal to hdh_d exist. We also determine the number of fullerenes where the minimum distance between any two pentagons is at least dd, for 1≤d≤51 \le d \le 5, up to 400 vertices.Comment: 15 pages, submitted for publication. arXiv admin note: text overlap with arXiv:1501.0268

    New Computational Upper Bounds for Ramsey Numbers R(3,k)

    Get PDF
    Using computational techniques we derive six new upper bounds on the classical two-color Ramsey numbers: R(3,10) <= 42, R(3,11) <= 50, R(3,13) <= 68, R(3,14) <= 77, R(3,15) <= 87, and R(3,16) <= 98. All of them are improvements by one over the previously best known bounds. Let e(3,k,n) denote the minimum number of edges in any triangle-free graph on n vertices without independent sets of order k. The new upper bounds on R(3,k) are obtained by completing the computation of the exact values of e(3,k,n) for all n with k <= 9 and for all n <= 33 for k = 10, and by establishing new lower bounds on e(3,k,n) for most of the open cases for 10 <= k <= 15. The enumeration of all graphs witnessing the values of e(3,k,n) is completed for all cases with k <= 9. We prove that the known critical graph for R(3,9) on 35 vertices is unique up to isomorphism. For the case of R(3,10), first we establish that R(3,10) = 43 if and only if e(3,10,42) = 189, or equivalently, that if R(3,10) = 43 then every critical graph is regular of degree 9. Then, using computations, we disprove the existence of the latter, and thus show that R(3,10) <= 42.Comment: 28 pages (includes a lot of tables); added improved lower bound for R(3,11); added some note

    On almost hypohamiltonian graphs

    Get PDF
    A graph GG is almost hypohamiltonian (a.h.) if GG is non-hamiltonian, there exists a vertex ww in GG such that G−wG - w is non-hamiltonian, and G−vG - v is hamiltonian for every vertex v≠wv \ne w in GG. The second author asked in [J. Graph Theory 79 (2015) 63--81] for all orders for which a.h. graphs exist. Here we solve this problem. To this end, we present a specialised algorithm which generates complete sets of a.h. graphs for various orders. Furthermore, we show that the smallest cubic a.h. graphs have order 26. We provide a lower bound for the order of the smallest planar a.h. graph and improve the upper bound for the order of the smallest planar a.h. graph containing a cubic vertex. We also determine the smallest planar a.h. graphs of girth 5, both in the general and cubic case. Finally, we extend a result of Steffen on snarks and improve two bounds on longest paths and longest cycles in polyhedral graphs due to Jooyandeh, McKay, {\"O}sterg{\aa}rd, Pettersson, and the second author.Comment: 18 pages. arXiv admin note: text overlap with arXiv:1602.0717

    Recursive generation of IPR fullerenes

    Full text link
    We describe a new construction algorithm for the recursive generation of all non-isomorphic IPR fullerenes. Unlike previous algorithms, the new algorithm stays entirely within the class of IPR fullerenes, that is: every IPR fullerene is constructed by expanding a smaller IPR fullerene unless it belongs to limited class of irreducible IPR fullerenes that can easily be made separately. The class of irreducible IPR fullerenes consists of 36 fullerenes with up to 112 vertices and 4 infinite families of nanotube fullerenes. Our implementation of this algorithm is faster than other generators for IPR fullerenes and we used it to compute all IPR fullerenes up to 400 vertices.Comment: 19 pages; to appear in Journal of Mathematical Chemistr
    • …
    corecore